Lie Algebra Approach in the Study of the Stability of Stochastic Linear Hybrid Systems
نویسندگان
چکیده
The problem of the stability of a class of stochastic linear hybrid systems with a special structure of matrices and a multiplicative excitation is considered. Sufficient conditions of the exponential p-th mean stability and the almost sure stability for a class of stochastic linear hybrid systems with the Markovian switching are derived. Also, sufficient conditions of the exponential mean-square stability for a class of stochastic linear hybrid systems satisfying the Lie algebra conditions with any switching are found. The obtained results are illustrated by examples and simulations.
منابع مشابه
New Solutions for Fokker-Plank Equation of Special Stochastic Process via Lie Point Symmetries
In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process. This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process.
متن کاملHybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance
This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...
متن کاملVoltage Regulation of DC-DC Series Resonant Converter Operating in Discontinuous Conduction Mode: The Hybrid Control Approach
Dynamic modeling and control of dc-dc series resonant converter (SRC) especially when operating in discontinuous conduction mode (DCM) is still a challenge in power electronics. Due to semiconductors switching, SRC is naturally represented as a switched linear system, a class of hybrid systems. Nevertheless, the hybrid nature of the SRC is commonly neglected and it is modeled as a purely contin...
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملLie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
متن کامل